Personal Profile

Name	Pankaj
Designation	Assistant Professor
E-mail	panku111297@gmail.com
Academic Qualification	M.Sc./NET/SET
Specialization	-
Teaching Experience	1 year
Courses/Training Programme Attended	1
Conferences/Seminars/Workshops/FDP	
International Conferences/Seminars	-
National Conferences/Seminars	-
Workshops Attended	-
Faculty Development Programmes	-
Publications	-
Any other information	-

Teaching Plan

Annexure-III

ANNUAL TEACHING PLAN:

Unit wise teaching Plan Session 2024-25 MECHANICS: PHYS101

Month	Week	Topics	Teaching Method	Student Activity
August	1 st	Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients.	Lecture	Discussion
	2 nd	Coordinate systems and motion of a particle: Volume, velocity and acceleration in Cartesian and Spherical co-ordinate systems, Solid angle.	Lecture/ PPT	Discussion
	3 rd	Space Time Symmetry and Conservation Laws: Homogeneity and isotropy of space and time, Relationship of conservation laws and symmetries of space and time.	Lecture	Discussion
	4 th	Inertial frames of reference : Galilean transformation and Galilean invariance.	Lecture	Discussion
September	1 st	Non-inertial frame of reference: Coriolis force and its applications, Foucault's pendulum.	Lecture/ PPT	Discussion
	2 nd	Newton's Law of Gravitation, Various forces in nature.	Lecture/ PPT	Assignment
	3 rd	Central and non-central forces, Inverse square force, Centre of mass, Equivalent one body problem.	Lecture/ PPT	Q/Ans.
	4 th	Reduced mass, angular momentum in central force field Equation of motion under a force law.	Lecture/ PPT	Discussion
October	1 st	Equation of orbit and turning points, relationship between eccentricity and energy, Kepler's laws, Basic idea of global positioning system (GPS).	Lecture	Discussion
	2 nd	Rotational Motion: Angular velocity, angular momentum, Torque, Conservation of angular momentum.	Lecture	Discussion
	3 rd	Kinematics of Elastic and Inelastic Collisions: Elastic and inelastic collisions, coefficient of restitution, Elastic collisions in laboratory system.	Lecture	Discussion
	4 th	Kinematics of Elastic and Inelastic Collisions: Elastic collisions in C.M. systems, Velocities, angle and energies in elastic collisions in C.M. and laboratory Systems.	Lecture/ PPT	Assignment
November	1 st	Classical Scattering: Cross- section for	Lecture	Assignment

		elastic scattering, Rutherford scattering (with		
		derivation).		
	2 nd	Concept of stationary universal frame of	Lecture	Discussion
		reference and search for ether. Michelson-		
		Morley experiment.		
	3 rd	Special theory of relativity: Postulates of	Lecture/ PPT	Discussion
		special theory of relativity. Lorentz		
		transformations. Observer in relativity.		
		Relativity of simultaneity.		
	4 th	Effects of Relativity: Length contraction.	Lecture/ PPT	Assignment
		Time dilation, Relativistic addition of		
		velocities		
December	1 st	Effects of Relativity: Variation of mass with	Lecture/ PPT	Assignment
		velocity and mass energy equivalence.		
		Increase of mass in an inelastic collision		
	2 nd	Relativistic momentum and energies.	Lecture	Discussion
		Transformation of momentum and Energy.		
	3 rd	Midterm Test		
	4 th	Midterm Test		
February	1 st	Relativistic Doppler effect. Minkowsky space	Lecture	Discussion
	2 nd	Revision/Presentations by students/ remedial Classes		
	3 rd	Revision/Presentations by students/ remedial Classes		
	4 th	Revision/Presentations by students/ remedial Cl	asses	
March	1 st	Revision, question/answer/ Final Practical.		

Pankaj Assistant Professor Physics

Month	Week	Торіс	Teaching Method	Student Activity
August	1 st	Vector Analysis : Vector algebra, Gradient, Divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem, Stokes's theorem, Green's theorem.	Lecture	Discussion
	2 nd	Electric Field: Electrostatic force, Electrostatic Field, electric flux, Gauss's theorem of electrostatics, Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor.	Lecture	Discussion
	3 rd	Electric Potential: electrostatic potential, electrostatic potential energy. Electric potential due to a dipole and quadrupole, long	Lecture	Discussion

Unit wise teaching Plan Session 2024-25 LECTRICITY, MAGNETISM AND EMT: PHYS102TH

		uniformly changed wire, charged disc,		
		Electric potential energy. Electric field as a		
	4 th	gradient of a scalar potential. Electric Current: Current and current	Lecture	Discussion
	4	density. Continuity equation, Microscopic	Lecture	Discussion
		form of Ohm's law and conductivity. Failure		
		of Ohms law and its explanation. Invariance		
		of charge.		
September	1 st	Magnetism: Ampere circuital law and its	Lecture/ PPT	Discussion
		applications. Hall Effect, Expression for Hall		
		constant and its significance. Divergence and		
		curl of magnetic field B . Vector potential:		
		Definition of vector potential A and		
		derivation.		
	2 nd	Field of Moving Charges: E in different	Lecture	Discussion
		frames of reference. Field of a point charge		
		moving with constant velocity. Field of		
		charge that starts or stops. Interaction between		
		moving charge and force between parallel currents.		
	3 rd	Surface current density: its definition and	Lecture	Discussion
	5	uses in calculation of change in magnetic field	Lecture	Discussion
		at a current sheet. Transformation equations		
		of E and B from one frame of reference to		
		another.		
	4 th	Dielectrics: Parallel plate capacitor with a	Lecture/ PPT	Discussion
		dielectric, dielectric constant, polarization and		
		polarization vector,		
October	1 st	Displacement vector D: Molecular	Lecture	Discussion
		interpretation of Claussius - Mossotti		
		equation, boundary conditions satisfied by E and D at the interface between two		
		homogenous dielectrics, illustration through a		
		simple example.		
_	2 nd	Polarization of matter: Atomic and	Lecture/ PPT	Assignment
	-	molecular dipoles, induced. Dipole moment		1.0018
		and atomic polarizability. Electric		
		susceptibility and polarization vector.		
	3 rd	Dielectrics: Capacity of a capacitor filled	Lecture/ PPT	Q/Ans.
		with Dielectrics, Gauss's law in Dielectrics,		
		Displacement vector, Energy stored in a		
	4 th	dielectric medium Magnetia Fields in Metter Bahavier of	Lecture / DDT	O/A ma
	4	Magnetic Fields in Matter: Behavior of various substances in magnetic fields.	Lecture/ PPT	Q/Ans.
		Definition of M and H and their relation to		
		free and bound currents. Magnetic		
		inter una counta currento. Magnetie	1	
1		permeability and susceptibility and their		
		permeability and susceptibility and their interrelation.		

		electrons and diamagnetism. Electron spin		
		and paramagnetic, Ferromagnetism. Domain		
		theory of ferromagnetism, magnetization		
		curve, hysterics loss, ferrites.		
	2 nd	Displacement current, Maxwell's equations	Lecture	Assignment
	2	and their physical interpretation	Lecture	Assignment
	3 rd		T. s. s. fees w. s.	Diamatica
	3	Electromagnetic wave propagation: EM	Lecture	Discussion
		waves and wave equation in a medium having		
		finite permeability and permittivity but with		
	.th	conductivity = 0		
	4 th	Poynting Theorem: Poynting vector,	Lecture/ PPT	Discussion
		Poynting theorem, Impedance of a dielectric		
	~4	to EM waves,		
December	1 st	EM waves in conducting medium and skin	Lecture/ PPT	Discussion
		depth.		
	2 nd	EM waves velocity in a conductor and	Lecture	Discussion
		anomalous dispersion.		
	3 rd	Midterm Test		
	4 th	Midterm Test		
February	1 st	Reflection and Transmission of EM waves at	Lecture/ PPT	Q/Ans.
_		a boundary of two dielectric media for normal		
		and oblique incidence of reflection of EM		
		waves from the surface of a conductor at		
		normal incidence.		
	2 nd	Revision/Presentations by students/ remedial C	lasses	
	3 rd	Revision/Presentations by students/ remedial C		
	4 th	Revision/Presentations by students/ remedial C		
March	1 st	Revision, question/answer/ Final Practical.		

Pankaj

Assistant Professor Physics

Unit wise teaching Plan Session 2024-25 STATISTICAL AND THERMAL PHYSICS: PHYS201

Month	Week	Торіс	Teaching Method	Student Activity
August	1 st	Basic Ideas of Statistical Physics: Scope of statistical physics, basic ideas about probability, distribution of four distinguishable particles in two compartments of equal sizes.	Lecture	Discussion
	2 nd	Concept of macro-states, micro-states, thermodynamic probability, effect of constraints on the system.	Lecture	Discussion
	3 rd	Distribution of n particles in two compartments, Deviation from the state of maximum probability.	Lecture	Discussion
	4 th	Equilibrium state of a dynamic system, distribution of n distinguishable particles in k	Lecture	Discussion

		compartments of unequal sizes.		
September	1 st	Phase space: Division of phase space into	Lecture/ PPT	Discussion
-		elementary cells, Three kinds of statistics.		
		The basic approach in the three statistics.		
-	2 nd	Maxwell-Boltzmann Statistics: Applied to	Lecture/ PPT	Assignment
		an ideal gas in equilibrium, experimental		U
		verification of the Maxwell Boltzmann's law		
		of distribution of molecular speeds.		
	3 rd	Quantum Statistics: Need for quantum	Lecture/ PPT	Q/Ans.
	0	statistics, 'h' as a natural constant and its		2 /1 mb.
		implications, indistinguishable particles and		
		its implications.		
-	4 th	Bose Einsteinstatistics: Derivation of	Lecture/ PPT	Discussion
	-	Planck's law of radiation, deduction of		Discussion
		Wien's distribution law and Stefan's law from		
		plank's law.		
October	1 st	Fermi Dirac Statistics Applications to liquid	Lecture	Discussion
October	1	helium, free electrons gas (Fermi level and	Lecture	Discussion
-	2 nd	Fermi Energy),	Lecture / DDT	0/4 mm
	2	Laws of Thermodynamics: Thermodynamic	Lecture/ PPT	Q/Ans.
		processes. Thermoelectric effects- Seebeck		
-	3 rd	effect, Peltier effect, Thomson effect.	T (D' '
	3	Entropy: Change of entropy along a	Lecture	Discussion
		reversible path in a p-v diagram, entropy of a		
		perfect gas, equation of state of ideal gas from		
		simple statistical considerations, heat death of		
-	4th	the universe.	I (DDT	D: .
	4 th	Statistical Interpretation of entropy:	Lecture/ PPT	Discussion
		Statistical definition of entropy, change of		
		entropy of system, additive nature of entropy,		
	. 64	law of increase of entropy.	_	
November	1 st	Reversible And Irreversible Processes:	Lecture	Discussion
		Example of reversible and irreversible		
		processes. Work done in a reversible process,		
		example of entropy in natural process,		
_		entropy and disorder		
	2 nd	Thermodynamic Potentials: Enthalpy,	Lecture	Assignment
		Gibbs, Helmholtz and Internal Energy		
		functions.		
	3 rd	Maxwell's thermodynamic relations:	Lecture	Discussion
		Derivation of Maxwell's thermodynamic		
		relations		
Ţ	4 th	Applications of thermodynamics relations:	Lecture/ PPT	Discussion
		Cooling produced by adiabatic stretching,		
		adiabatic compression, adiabatic Stretching of		
		a wire, stretching of thin films,		
December	1 st	Change of internal energy with volume.	Lecture/ PPT	Discussion
		Clausius-Clapeyron Equation,		
ŀ	2 nd	Thermodynamical treatment of Joule-	Lecture	Discussion

		Thomson effect for liquification of Helium.
	3 rd	Midterm Test
	4 th	Midterm Test
February	1 st	Production of very low temperatures by Lecture Discussion
		adiabatic demagnetization, TdS equations.
	2 nd	Presentations by students/ remedial Classes
	3 rd	Presentations by students/ remedial Classes
	4 th	Presentations by students/ remedial Classes
March	1 st	Revision, question/answer/ Final Practical.

Pankaj Assistant Professor Physics

		WAVES AND OPTICS: PHYS202		-
Month	Week	Торіс	Teaching Method	Student Activity
August	1 st	Simple harmonic motion : characteristics, graphical representation of SHM, phase relation between displacement, velocity and acceleration of a particle, executing SHM, SHM oscillator (mass attached to a spring placed on horizontal frictionless surface).	Lecture/ PPT	Discussion
	2 nd	Simple harmonic motion : Energy of a simple harmonic oscillator. Solution of the differential equation of SHM. Average kinetic energy, average potential energy and total energy.	Lecture	Discussion
	3 rd	Damped SHM: Damped oscillations. Differential equation of motion of one dimensional damped harmonic mechanical oscillator. Types of damping	Lecture	Discussion
	4 th	Damped harmonic electric oscillator (differential equation and its solutions). Determination of the damping constants.	Lecture	Discussion
September	1 st	Logarithmic decrement. Relaxation time, Quality factor, power dissipation in a damped harmonic oscillator when damping is weak	Lecture/ PPT	Discussion
	2 nd	Relation between power dissipation energy and relaxation time of damped harmonic oscillator.	Lecture/ PPT	Assignment
	3 rd	Forced Oscillator: Transient and steady behavior of forced oscillator. Displacement and velocity variation with driving force frequency. Variation of phase with frequency.	Lecture/ PPT	Q/Ans.
	4 th	Forced Oscillator: Power supplied to an oscillator and its variation with frequency. Q-value and band width. Q-value as an	Lecture/ PPT	Discussion

Unit wise teaching Plan Session 2024-25 WAVES AND OPTICS: PHYS202

		amplification factor.		
October	1 st	Coupled Oscillators: Stiffness coupled	Lecture	Discussion
		pendulums. Normal co-ordinates and normal		
		modes of vibration. Inductance coupling of		
		electrical oscillators.		
	2 nd	Wave motion: The type of waves. The wave	Lecture	Discussion
		equation and its solution. Characteristic		
		impedance of a string. Impedance matching.		
	3 rd	Wave motion: Reflection and transmission of	Lecture	Discussion
	U	energy. Reflected and transmitted energy		Discussion
		coefficients. Standing waves on a string of		
		fixed length. Energy of a vibrating string.		
		Wave velocity and group velocity		
	4 th		Lastura	Discussion
	4	Wave Optics: Electromagnetic nature of	Lecture	Discussion
		light. Definition and Properties of wave front.		
	a st	Huygens Principle.	T .	
November	1 st	Interference: Division of wavefront and	Lecture	Discussion
		division of amplitude. Young's Double Slit		
		experiment, Lloyd's Mirror and Fresnel's		
		Biprism.		
	2 nd	Interference: Phase change on reflection:	Lecture/ PPT	Q/Ans.
		Stokes' treatment. Interference in Thin Films,		
		parallel and wedge-shaped films, Fringes of		
		equal inclination (Haidinger Fringes) and		
		Fringes of equal thickness (Fizeau Fringes).		
	3 rd	Newton's Rings: Measurement of	Lecture/ PPT	Discussion
		wavelength and refractive index.		
		Michelson's Interferometer.		
	4 th	Diffraction: Fraunhofer diffraction: Single	Lecture/ PPT	Discussion
	-	slit; Double Slit. Multiple slits & Diffraction		
		grating, Dispersive power of diffraction		
		grating, Fresnel Diffraction:		
December	1 st	Diffraction: Half-period zones. Zone plate.	Lecture/ PPT	Q/Ans.
December	1	Fresnel Diffraction pattern of a straight edge,		Q/Alls.
		a slit and a wire using half-period zone		
	2 nd	analysis		D
	2""	Polarization: Transverse nature of light	Lecture/ PPT	Discussion
		waves. Unpolarized and plane polarized light,		
		production of polarized light, Wire grid		
		polarizer, Polaroid, Effect of intensity of light		
		passing through Polaroid, Malus' law,		
		Polarization by reflection (Brewster law)		
	3 rd	Midterm Test		
	4 th	Midterm Test		
February	1 st	Double refraction: Ordinary ray and	Lecture	Discussion
·		extraordinary ray, positive and negative		
		crystals, Birefringence, Nicol Prism, quarter		
	1			
		wave plate and half wave plate production of		
		wave plate and half wave plate, production of elliptically polarized and circularly polarized		

	2 nd	Revision/Presentations by students/ remedial Classes
	3 rd	Revision/Presentations by students/ remedial Classes
	4 th	Revision/Presentations by students/ remedial Classes
March	1 st	Revision, question/answer/ Final Practical.

Pankaj

Assistant Professor Physics

Unit wise teaching Plan Session 2024-25 ELEMENTS OF MODERN PHYSICS: PHYS301

Month	L L		Teaching Method	Student Activity	
August	1 st	Planck's constant and light as a collection of photons, Photo-electric effect and Compton scattering.	Lecture/ PPT	Discussion	
2 nd		Atomic Structure: Rutherford atomic model, Bohr's atomic model, Bohr's quantization rule and atomic stability, calculation of energy levels for hydrogen like atoms and their spectra.	Lecture/ PPT	Discussion	
	3 rd	Heisenberg uncertainty principle - Estimating minimum energy of a confined principle, Energy-time uncertainty.	Lecture	Discussion	
	4 th	Wave-particle duality. Matter waves and De Broglie wavelength, Davisson-Germer experiment.	Lecture	Discussion	
September	1 st	Wave function and its properties, Schrodinger equation, Momentum and Energy operators, expectation value, stationary states.	Lecture/ PPT	Discussion	
	2 nd	Wave function: Principle and physical interpretation of wave function, probabilities and normalization;	Lecture/ PPT	Assignment	
	3 rd	Probability and probability current densities in one dimension. Orthogonality, Parity.	Lecture/ PPT	Q/Ans.	
	4 th	One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization, Quantum dot as an example.	Lecture/ PPT	Discussion	
October	1 st	Quantum mechanical scattering and tunnelling in one dimension - across a step potential	Lecture	Discussion	
	2 nd	Rectangular potential barrier, Harmonic Oscillator.	Lecture	Discussion	
	3 rd	Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle, Mass defect and packing fraction.	Lecture/ PPT	Q/Ans.	
	4 th	Nature of nuclear force, NZ graph, semi- empirical mass formula and binding energy,	Lecture	Discussion	

		Liquid drop model.		
November	1 st	Radioactivity: Stability of nucleus; Law of radioactive decay.	Lecture	Discussion
2 nd		Mean life, half-life., average life time, radioactive series, laws of successive	Lecture	Assignment
		disintegration.		
	3 rd	α Decay: Properties of α Rays, Geiger-Nuttal law, Gamow's theory of α decay	Lecture	Discussion
	4 th	β Decay: Different modes of β Decay, energy released, spectrum and Pauli's prediction of	Lecture/ PPT	Discussion
	~4	neutrino, γ-ray emission		
December	1 st	Fission and fusion: Mass deficit, relativity and generation of energy;	Lecture/ PPT	Q/Ans.
	2 nd	Fission: Nature of fragments and emission of neutrons.	Lecture	Discussion
	3 rd Midterm Test			
	4 th	Midterm Test		
February	1 st	Nuclear reactor: Slow neutrons interacting with Uranium 235, Fusion and thermonuclear reactions.	Lecture/ PPT	Discussion
	2 nd	Revision/Presentations by students/ remedial Classes		
	3 rd	Revision/Presentations by students/ remedial Cl		
	4 th	Revision/Presentations by students/ remedial Classes		
March	1 st	Revision, question/answer/ Final Practical.		

Pankaj

Assistant Professor Physics

Unit wise teaching Plan Session 2024-25 QUANTUM MECHANICS: PHYS305

Month	Week	Торіс	Teaching Method	Student Activity
August	1 st	Time dependent Schrodinger equation: Time dependent Schrodinger equation and dynamical evolution of a quantum state, Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions;	Lecture	Discussion
	2 nd	Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions. Position, momentum & Energy operators, commutator of position and momentum operators, Expectation values of position and momentum.	Lecture/ PPT	Discussion
	3 rd	Time independent Schrodinger equation- Hamiltonian, stationary states and energy eigenvalues, Wave Function of a Free Particle.	Lecture	Discussion

	4 th		T frame	Diamatica
	4	Expansion of an arbitrary wavefunction as a	Lecture	Discussion
		linear combination of energy eigenfunctions;		
		General solution of the time dependent		
		Schrodinger equation in terms of linear		
<u> </u>	→ st	combinations of stationary states;		D' '
September	1 st	Application to the spread of Gaussian wave	Lecture/ PPT	Discussion
		packet for a free particle in one dimension;		
		wave packets, Fourier transforms and		
		momentum space wavefunction; Position-		
	and	momentum uncertainty principle.	I (DDT	•
	2 nd	General discussion of bound states in an	Lecture/ PPT	Assignment
		arbitrary potential- continuity of wave		
		function, boundary condition and emergence		
	- rd	of discrete energy levels.		
	3 rd	Particle in a box, Application to one-	Lecture/ PPT	Q/Ans.
	. th	dimensional problem- square well potential;	T	D: :
	4 th	Quantum mechanics of simple harmonic	Lecture/ PPT	Discussion
		oscillator-energy levels and energy		
A	_ st	eigenfunctions.		~ ~
October	1 st	Class Test	Class Test	Class Test
	2 nd	Quantum theory of hydrogen-like atoms:	Lecture/ PPT	Discussion
		Time independent Schrodinger equation in		
		spherical polar coordinates; separation of		
		variables for the second order partial		
	ord	differential equation.	.	D : .
	3 rd	Angular momentum operator and quantum	Lecture	Discussion
		numbers, Radial wave functions, Orbital		
		angular momentum quantum numbers, s, p,		
	th	d, shells	T /	D
	4 th	Atoms in Electric and Magnetic Fields-	Lecture	Discussion
		Electron Angular Momentum. Space		
		Quantization. Electron Spin and Spin Angular		
N T N	_ st	Momentum	.	D' '
November	1 st	Larmor's Theorem, Spin Magnetic Moment.	Lecture	Discussion
	2 nd	Stern Gerlach Experiment. Zeeman Effect	T (•
	2""	Electron Magnetic Moment and Magnetic	Lecture	Assignment
		Energy, Gyromagnetic Ratio and Bohr		
	3 rd	Magneton.	T (D' '
	3.4	Atoms in External Magnetic Fields:	Lecture	Discussion
		Zeeman Effect, Normal and Anomalous		
	_ th	Zeeman Effect.		D' '
	4 th	Many electron atoms: Periodic table, Pauli's	Lecture/ PPT	Discussion
		Exclusion Principle, Symmetric and		
.	- et	Antisymmetric Wave Functions.	T	D : :
December	1 st	Fine structure, Spin orbit coupling.	Lecture/ PPT	Discussion
	2 nd	Spectral Notations for Atomic States. Total	Lecture	Discussion
	a red	Angular Momentum.		
	3 rd	Midterm Test		
	4 th	Midterm Test		

February	1 st	Vector Model, Spin-orbit coupling in atoms- Lecture Discu		Discussion
		L-S and J-J couplings.		
	2 nd	Revision/Presentations by students/ remedial Classes		
	3 rd	Revision/Presentations by students/ remedial Classes		
	4 th	Revision/Presentations by students/ remedial Classes		
March	1 st	Revision, question/answer/ Final Practical.		

Pankaj Assistant Professor Physics

Course Outcome

Annexure-IV

Name of the Course	Objectives	Course Outcome
MECHANICS	To introduce students to the	Students will be able to explain
PHYS101	fundamental principles that	and apply the fundamental
	govern the motion of objects	concepts of mechanics like
	and forces acting on them.	Coordinate systems, Frame of
		reference, Inverse Square
		forces, rotational motion and
		special relativity.
ELECTRICITY AND	To provide students with	Students will be able to explain
MAGNETISM	thorough understanding of	the concepts of electric field,
PHYS102	fundamental principles and	current, potential, magnetic
	mathematical tools to describe	field, magnetic effects of
	and analyse electric and	current, Field of moving
	magnetic phenomena.	charges, Electromagnetic waves and their interactions
		waves and their interactions with matter.
STATISTICAL	To introduce students to various	Students will be able apply
PHYSICS AND	types of statistics in physics that	statistical methods to
THERMODYNAMICS	are used to study system of	understand system of particles,
PHYS201	large number of particles and	Black body radiation and
11115-01	establish laws of	behaviour of thermodynamical
	thermodynamics using	system and also understand
	principles of statistics.	laws of thermodynamics,
		concept of Entropy, Maxwell's
		thermodynamic relations and
		their applications.
WAVES AND OPTICS	To introduce students to	Students will be able to explain
PHYS202	concept Simple Harmonic	the concept of Damped and
	Motion and Wave motion and	Forced oscillator, coupled
	optical phenomenon like	oscillator, principles of wave
	interference, Diffraction and	motion andoptical phenomenon

	Polarisation.	like interference diffraction
		like interference, diffraction and Polarisation of light wave.
	To gravido uno granunio o strillo	, in the second s
COMPUTATIONAL	To provide programming skills	Students will gain proficiency
PHYSICS	and understanding f numerical	in programming languages like Fortran and will be able to
PHYS204	methods and algorithms to solve	
	physical problems.	apply computational tools and
		numerical methods to solve
		physical and mathematical
		problems.
ELECTRICAL	To provideunderstanding of	Students will be able to
CIRCUITS AND	electricity, electrical circuits	understand about basic
NETWORKING	and its components and impart	electricity principles, electrical
SKILLS	skills of connecting electrical	circuits, Generator,
PHYS205	circuits.	transformer, electric motor and
		electric wiring.
ELEMENTS OF	To develop an understanding of	Students will be able to explain
MODERN PHYSICS	concepts like quantum	principles of quantum
PHYS301	mechanics, Wave particle	mechanics and concepts of
	duality, quantum uncertainty,	wave function, Wave particle
	atomic structures and nuclear	duality, models of atomic
	physics.	structure and Nuclear Physics
		Phenomenon like radioactivity,
		Fission and Fusion.
QUANTUM	To introduce students to	Students will be able to explain
MECHANICS	principles of quantum	various concepts of quantum
PHYS305	mechanics and mathematical	mechanics like wave function,
	tools that are used for studying	Schrodinger equation and its
	quantum systems.	solution and apply quantum
		principles to Hydrogen like
		atoms and many electron atoms
		to explain quantisation, spin -
		orbit coupling, fine structure
		splittingand Zeeman effect.
RADIATION SAFETY	To develop understanding of the	Students will be able to
PHYS307	nature of radiation, its effects,	understand about the nature
	detection methods and how to	and types of radiation and their
	manage it safely.	interaction with matter,
		detection methods and
		radiation safety management.
WEATHER	To introduce students to the	Students will gain basic
FORECASTING	basics of weather systems and	knowledge about atmosphere,
PHYS309	weather forecasting methods.	weather systems, climate
		change and weather forecasting
		methods.
	L	

Courses Offered

Annexure-V

Year DSC Name & Code SEC Name & Code DSE Name & Code
--

B.ScI	1. MECHANICS PHYS 101 2. ELECTRICITY AND		
	MAGNETISM PHYS 102		
B.ScII	1. STATISTICAL PHYSICS AND	1.COMPUTATIONAL PHYSICS	
	THERMODYNAMICS PHYS201	PHYS204	
	2. WAVES AND OPTICS	2. ELECTRICAL CIRCUITS AND	
	PHYS202	NETWORKING SKILLS	
		PHYS205	
B.ScIII		1. RADIATION SAFETY	1. ELEMENTS OF MODERN
		PHYS307	PHYSICS PHYS301
		2. WEATHER	
		FORECASTING PHYS309	2. QUANTUM MECHANICS
		11115507	PHYS305

Department of Physics Cross Cutting Issues

Sr. No	Topics	Course			
1	Radiation safety management:	RADIATION SAFETY			
	Biological effects of ionizing radiation.	PHYS307			
	Introduction of safety and risk management of				
	radiation.				
	Nuclear waste and disposal management.				
2	Climate Change:	WEATHER			
	Causes of climate change, Global warming and its	FORECASTING			
	outcomes, air pollution, aerosols, ozone depletion,	PHYS309			
	acid rain, environmental issues related to climate.				
3	Alternate Sources of energy:	RENEWABLE ENERGY			
	Solar energy, Wind Energy, Ocean Energy,	AND ENERGY			
	Geothermal Energy, Hydro Energy, Piezoelectric	HARVESTING			
	Energy harvesting, Electromagnetic Energy PHYS309				
	Harvesting.				

Introduction of the subject

Physics is a branch of science that explores the fundamental principles governing the natural world. In physics we study matter, energy, space, and time, as well as the interactions between them. By understanding these concepts, physics seeks to uncover the laws that dictate how the universe operates, from the smallest subatomic particles to the largest galaxies.

Department of Physics in GDC Kandaghat offers B.Sc. Physic Degree course and follows syllabus designed by Himachal Pradesh university, Shimla. The syllabus comprehensively covers keyareas of study in Physics like Classical Mechanics, Electromagnetism, Thermodynamics, Optics, Quantum Mechanics, Solid State Physics and Electronics, Nuclear and Particle Physics, Astrophysics etc. We strive to give theoretical as well as practical knowledge of the subject through innovative and engaging teaching learning processes. Skill enhancement courses are also taught along with core courses in physics to equipe students with working skills.

Why to study Physics:

Physics provides insights into how the universe works, explaining phenomena from daily life to cosmic events. It has driven the development of modern technologies such as machines, electricity, electronic devices, computers and telecommunications. It encourages curiosity, critical thinking, and problem-solving skills, making it a cornerstone of scientific discovery and helpful in every walk of life.